THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW3 Solution

Yan Lung Li

1. (P. 179 Q3) We proceed by induction on n :

Base step $n=1$: This reduces to usual Leibniz rule (6.13(c))
Inductive step: Suppose for some $N \in \mathbb{N}$, the statement holds for all $n<N$. When $n=N$ (the variable x is suppressed for simplicity)

$$
(f g)^{(N)}=\left((f g)^{\prime}\right)^{(N-1)}=\left(f^{\prime} g+f g^{\prime}\right)^{(N-1)}=\left(f^{\prime} g\right)^{(N-1)}+\left(f g^{\prime}\right)^{(N-1)}
$$

now by inductive hypothesis for $n=N-1$ on $f^{\prime} g$ and $f g^{\prime}$ respectively, we have

$$
\begin{aligned}
\left(f^{\prime} g\right)^{(N-1)}+\left(f g^{\prime}\right)^{(N-1)} & =\sum_{k=0}^{N-1}\binom{N-1}{k}\left(f^{\prime}\right)^{(N-1-k)} g^{(k)}+\sum_{k=0}^{N-1}\binom{N-1}{k} f^{(N-1-k)}\left(g^{\prime}\right)^{(k)} \\
& =\left(f^{(N)} g+\sum_{k=1}^{N-1}\binom{N-1}{k} f^{(N-k)} g^{(k)}\right)+\left(\sum_{k=1}^{N-1}\binom{N-1}{k-1} f^{(N-k)}(g)^{(k)}+f g^{(N)}\right) \\
& =f^{(N)} g+\sum_{k=1}^{N-1}\left(\binom{N-1}{k}+\binom{N-1}{k-1}\right) f^{(N-k)} g^{(k)}+f g^{(N)} \\
& =f^{(N)} g+\sum_{k=1}^{N-1}\binom{N}{k} f^{(N-k)} g^{(k)}+f g^{(N)} \\
& =\sum_{k=0}^{N}\binom{N}{k} f^{(N-k)} g^{(k)}
\end{aligned}
$$

Therefore, the statement holds for $n=N$. Hence by induction the statement holds for all $n \in \mathbb{N}$.
2. (P. 179 Q4) Consider $f(x)=\sqrt{1+x}$ for $x \geq 0$. Then f is twice differentiable with

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}} ; f^{\prime \prime}(x)=-\frac{1}{4(1+x)^{\frac{3}{2}}}
$$

and hence for all $y>0,0>f^{\prime \prime}(y)>-\frac{1}{4}$
Now given any $x>0$, let $I=[0, x]$ and consider f defined on $[0, x] ; f, f^{\prime}$ are continuous on $[0, x]$ and $f^{\prime \prime}$ exists on $(0, x)$. Apply Taylor's theorem (Theorem 6.4.1) with $x_{0}=0$, there exists $c \in(0, x)$ such that

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(c)}{2!} x^{2}
$$

More explicitly, this implies

$$
\sqrt{1+x}=1+\frac{1}{2} x+\frac{f^{\prime \prime}(c)}{2} x^{2}
$$

Since $c>0$ and $x^{2}>0,0>\frac{f^{\prime \prime}(c)}{2} x^{2}>-\frac{1}{8} x^{2}$, and therefore

$$
1+\frac{1}{2} x-\frac{1}{8} x^{2}<\sqrt{1+x}<1+\frac{1}{2} x
$$

3. (P.179 Q10) Let $h(x)=\left\{\begin{array}{ll}e^{-\frac{1}{x^{2}}} & ; x \neq 0 \\ 0 & ; x=0\end{array}\right.$, note that h is differentiable on $\mathbb{R} \backslash\{0\}$ with $h^{\prime}(x)=\frac{2}{x^{3}} h(x)$. We proceed by establishing the following claims:
(i) for all $k \in \mathbb{N}, \lim _{x \rightarrow 0} \frac{h(x)}{x^{k}}=0$.
(ii) for all $n \in \mathbb{N}$, for all $k \in \mathbb{N}, \lim _{x \rightarrow 0} \frac{h^{(n)}(x)}{x^{k}}=0$.
(iii) for all $n \in \mathbb{N}, n$th derivative of h at 0 exists and $h^{(n)}(0)=0$.

Proof of (i): Induction on k :
Base step $k=1: \lim _{x \rightarrow 0} \frac{h(x)}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{e^{\frac{1}{x^{2}}}}=\lim _{x \rightarrow 0} \frac{-\frac{1}{x^{2}}}{e^{\frac{1}{x^{2}}} \cdot-\frac{2}{x^{3}}}=\lim _{x \rightarrow 0} \frac{x}{2 e^{\frac{1}{x^{2}}}}=0$
where we have applied L'Hospital's rule in the second equality (careful justifications are left as exercises for readers)

Inductive step: Suppose for some $K \in \mathbb{N}$, the statement holds for all $k<K$.
When $k=K, \lim _{x \rightarrow 0} \frac{h(x)}{x^{K}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x^{K}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0} \frac{-\frac{K}{x^{K+1}}}{e^{\frac{1}{x^{2}}} \cdot-\frac{2}{x^{3}}}=\frac{K}{2} \lim _{x \rightarrow 0} \frac{h(x)}{x^{K-2}}=0$
Again, we have applied L'Hospital's rule in the second equality.
Therefore, the statement holds for $k=K$. Hence by induction the statement holds for all $k \in \mathbb{N}$.
Proof of (ii): Induction on n :
Base step $n=1$: for all $k \in \mathbb{N} \lim _{x \rightarrow 0} \frac{h^{\prime}(x)}{x^{k}}=\lim _{x \rightarrow 0} \frac{2 h(x)}{x^{3+k}}=0$ (by (i))
Inductive step: Suppose for some $N \in \mathbb{N}$, the statement holds for all $n<N+1$.
When $n=N+1, h^{(N+1)}(x)=\left(h^{\prime}(x)\right)^{(N)}=\left(\frac{2}{x^{3}} h(x)\right)^{(N)}$
By generalised Leibniz rule (Section 6.4 Q3), we have

$$
\left(\frac{2}{x^{3}} h(x)\right)^{(N)}=\sum_{l=0}^{N}\binom{N}{l}\left(\frac{2}{x^{3}}\right)^{(N-l)} h(x)^{(l)}
$$

for each $l,\left(\frac{2}{x^{3}}\right)^{(N-l)}=\frac{n_{l}}{x^{3+(N-l)}}$ for some $n_{l} \in \mathbb{Z}$, and hence we have

$$
\sum_{l=0}^{N}\binom{N}{l}\left(\frac{2}{x^{3}}\right)^{(N-l)} h(x)^{(l)}=\sum_{l=0}^{N}\binom{N}{l} \frac{n_{l} h(x)^{(l)}}{x^{3+N-l}}
$$

Therefore, for all $k \in \mathbb{N}, \lim _{x \rightarrow 0} \frac{h^{(N+1)}(x)}{x^{k}}=\lim _{x \rightarrow 0} \frac{\sum_{l=0}^{N}\binom{N}{l} \frac{n_{l} h(x)^{(l)}}{x^{3+N-l}}}{x^{k}}=\lim _{x \rightarrow 0} \sum_{l=0}^{N}\binom{N}{l} \frac{n_{l} h(x)^{(l)}}{x^{3+N-l+k}}=0$ by inductive
hypothesis.
Therefore, the statement holds for $n=N+1$. Hence by induction the statement holds for all $n \in \mathbb{N}$.
Proof of (iii): Induction on n :
Base step $n=1: \lim _{x \rightarrow 0} \frac{h(x)-h(0)}{x-0}=0$ by (i). Hence $h^{\prime}(0)=0$.
Inductive step: Suppose for some $N \in \mathbb{N}$, the statement holds for all $n<N+1$.
When $n=N+1, \lim _{x \rightarrow 0} \frac{h^{(N)}(x)-h^{(N)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{h^{(N)}(x)}{x}=0$ by (ii) with $k=1$. Therefore, $(N+1)$ th derivative of h at 0 exists and $h^{(N+1)}(0)=0$.

Therefore, the statement holds for $n=N+1$. Hence by induction the statement holds for all $n \in \mathbb{N}$.
Now fix $x \neq 0, x_{0}=0$ and apply taylor's theorem (Theorem 6.4.1) to h, then for each $n \in \mathbb{N}, h(x)=$ $P_{n}(x)+R_{n}(x)$.

By (iii), $h^{(l)}(0)=0$ for all $l \in \mathbb{N}$. Therefore, $P_{n}(x) \equiv 0$, and hence $h(x)=R_{n}(x)$ for all $n \in \mathbb{N}$.
Since $h(x) \neq 0, R_{n}(x)$ does not converge to 0 as $n \rightarrow \infty$.
Remark. The key point of this question is to express $h^{(N+1)}$ in terms of a sum of its lower derivatives with rational functions as coefficients. Many students recognised this, but were not able to formulate this in precise term or providing enough justification for this.

